Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HKI lớp 11 môn Toán năm 2018 2019 trường Lương Ngọc Quyến Thái Nguyên

Nội dung Đề thi HKI lớp 11 môn Toán năm 2018 2019 trường Lương Ngọc Quyến Thái Nguyên Bản PDF Sytu giới thiệu đến bạn đọc nội dung đề thi HKI Toán lớp 11 năm học 2018 – 2019 trường THPT Lương Ngọc Quyến – Thái Nguyên, đề có mã đề 102 được biên soạn theo hình thức trắc nghiệm khách quan kết hợp với tự luận, trong đó phần trắc nghiệm gồm 30 câu, chiếm 60% tổng số điểm, phần tự luận gồm 3 câu, chiếm 40% tổng số điểm, thông qua kỳ thi này, giáo viên bộ môn Toán và nhà trường sẽ đánh giá được toàn diện chất lượng học tập môn Toán của học sinh khối lớp 11 trong giai đoạn vừa qua của năm học, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HKI Toán lớp 11 năm học 2018 – 2019 trường THPT Lương Ngọc Quyến – Thái Nguyên : + Khẳng định nào sau đây sai? A. Phép tịnh tiến biến đoạn thẳng thành đoạn thẳng bằng nó. B. Phép quay biến đường thẳng thành đường thẳng song song hoặc trùng với nó. C. Phép tịnh tiến biến tam giác thành tam giác bằng nó. D. Phép quay biến đường tròn thành đường tròn có cùng bán kính. + Cho đa giác đều 12 đỉnh nội tiếp đường tròn tâm O. Chọn ngẫu nhiên 3 đỉnh của đa giác đó. Tính xác suất để 3 đỉnh được chọn tạo thành tam giác không có cạnh nào là cạnh của đa giác đã cho. [ads] + Cho tứ diện ABCD. Gọi M là trung điểm cạnh AB, N thuộc cạnh AC sao cho AN = 2NC, P thuộc cạnh BD sao cho BP = 3PD. a) Xác định giao tuyến của hai mặt phẳng (MNP) và (BCD). b) Xác định giao điểm I của đường thẳng CD và mặt phẳng (MNP); giao điểm J của đường thẳng AD và mặt phẳng (MNP). Từ đó suy ra ba điểm N, I, J thẳng hàng. c) Giả sử điểm P di động trên cạnh BD. Gọi K là giao điểm của MI và NP. Chứng minh K thuộc một đường thẳng cố định. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Thủ Khoa Huân TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Thủ Khoa Huân TP HCM Bản PDF Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán lớp 11, Sytu sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán lớp 11 năm học 2019 – 2020 trường THPT Thủ Khoa Huân, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán lớp 11 năm 2019 – 2020 trường THPT Thủ Khoa Huân – TP HCM : + Cho A = {0; 1; 2; 3; 4; 5; 6; 7}. a/ Có thể lập được bao nhiêu số có 4 chữ số khác nhau? b/ Có thể lập được bao nhiêu số có 4 chữ số khác nhau và chia hết cho 5? c/ Gọi S là tập các số có bốn chữ số khác nhau được lập từ tập A. Lấy ngẫu nhiên một số từ tập S, tính xác suất số lấy được là một số chia hết cho 4. + Giải các phương trình lượng giác sau. + Tìm số hạng không chứa x trong khai triển (x2 – 1/x4)^12.
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Trần Nhân Tông TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Trần Nhân Tông TP HCM Bản PDF Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán lớp 11, Sytu sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán lớp 11 năm học 2019 – 2020 trường THPT Trần Nhân Tông, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán lớp 11 năm 2019 – 2020 trường THPT Trần Nhân Tông – TP HCM : + Từ 5 chữ số 1, 3, 4, 5, 7 có thể tạo thành bao nhiêu số có 4 chữ số trong mỗi trường hợp sau: a) Bốn chữ số đôi một khác nhau. b) Chữ số 1 có mặt 2 lần, các chữ số còn lại có mặt nhiều nhất 1 lần. + Tìm hệ số của số hạng chứa x^4 trong khai triển của biểu thức (1 + 2x)^6. + Tìm hệ số của số hạng chứa x4y4 trong khai triển của biểu thức (x2 + 1)(3x – 2y)^6.
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Trần Hữu Trang TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Trần Hữu Trang TP HCM Bản PDF Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán lớp 11, Sytu sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán lớp 11 năm học 2019 – 2020 trường THPT Trần Hữu Trang, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán lớp 11 năm 2019 – 2020 trường THPT Trần Hữu Trang – TP HCM : + Bình A chứa 3 quả cầu xanh, 4 quả cầu đỏ và 5 quả cầu trắng. Bình B chứa 4 quả cầu xanh, 3 quả cầu đỏ và 6 quả cầu trắng. Bình C chứa 5 quả cầu xanh, 5 quả cầu đỏ và 2 quả cầu trắng. Từ mỗi bình lấy ra một quả cầu. Có bao nhiêu cách lấy để cuối cùng được 3 quả có màu giống nhau. + Cho 100 tấm thẻ được đánh số từ 1 đến 100, chọn ngẫu nhiên 3 tấm thẻ. Tính xác suất để chọn được 3 tấm thẻ có tổng các số ghi trên thẻ là số chia hết cho 2. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N, P lần lượt là trung điểm của SA, BC, CD. a. Tìm giao tuyến của hai mặt phẳng (SAB) và (SCD). b. Tìm giao điểm E của đường thẳng SB và mặt phẳng (MNP). c. Chứng minh rằng NE vuông góc (SAP).
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm học 2019 2020 sở GD ĐT Quảng Nam
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm học 2019 2020 sở GD ĐT Quảng Nam Bản PDF Thứ Hai ngày 06 tháng 01 năm 2020, sở Giáo dục và Đào tạo tỉnh Quảng Nam tổ chức kiểm tra chất lượng học kỳ 1 môn Toán lớp 11 năm học 2019 – 2020. Đề thi HK1 Toán lớp 11 năm học 2019 – 2020 sở GD&ĐT Quảng Nam mã đề 101 gồm có 02 trang với 15 câu trắc nghiệm và 03 câu tự luận, thời gian học sinh làm bài là 60 phút, đề thi có đáp án và lời giải chi tiết các mã đề 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124. Trích dẫn đề thi HK1 Toán lớp 11 năm học 2019 – 2020 sở GD&ĐT Quảng Nam : + Trong không gian cho đường thẳng a và mặt phẳng (α) song song với nhau. Phát biểu nào sau đây sai? A. Có duy nhất một mặt phẳng chứa đường thẳng a và song song với (α). B. Trong mặt phẳng (α) có duy nhất một đường thẳng song song với đường thẳng a. C. Nếu một mặt phẳng (β) chứa đường thẳng a và cắt (α) theo giao tuyến b thì b song song với a. D. Trong mặt phẳng (α) có vô số đường thẳng chéo nhau với đường thẳng a. + Một công ty nhận được 50 hồ sơ xin việc của 50 người khác nhau muốn xin việc vào công ty, trong đó có 20 người biết tiếng Anh, 17 người biết tiếng Pháp và 18 người không biết cả tiếng Anh và tiếng Pháp. Công ty cần tuyển 5 người biết ít nhất một thứ tiếng Anh hoặc Pháp. Tính xác suất để trong 5 người được chọn có 3 người biết cả tiếng Anh và tiếng Pháp? [ads] + Cho hình chóp S.ABCD có đáy là hình bình hành, G là trọng tâm tam giác SAD, M là trung điểm của AB. a) Chứng minh AD // (SBC). b) Tìm giao tuyến của hai mặt phẳng (SGM) và (SAC). c) Gọi (α) là mặt phẳng chứa GM và song song với AC, (α) cắt SD tại E. Tính tỉ số SE/SD. + Một thầy giáo có 20 quyển sách khác nhau gồm 7 quyển sách Toán, 5 quyển sách Lí và 8 quyển sách Hóa. Thầy chọn ra 9 quyển sách để tặng cho học sinh. Hỏi thầy giáo đó có bao nhiêu cách chọn sao cho số sách còn lại của thầy có đủ 3 môn? + Một hộp đựng 5 quả cầu đỏ và 8 quả cầu vàng (các quả cầu có bán kính khác nhau). Hỏi có bao nhiêu cách chọn ra 3 quả cầu cùng màu từ hộp trên? File WORD (dành cho quý thầy, cô):